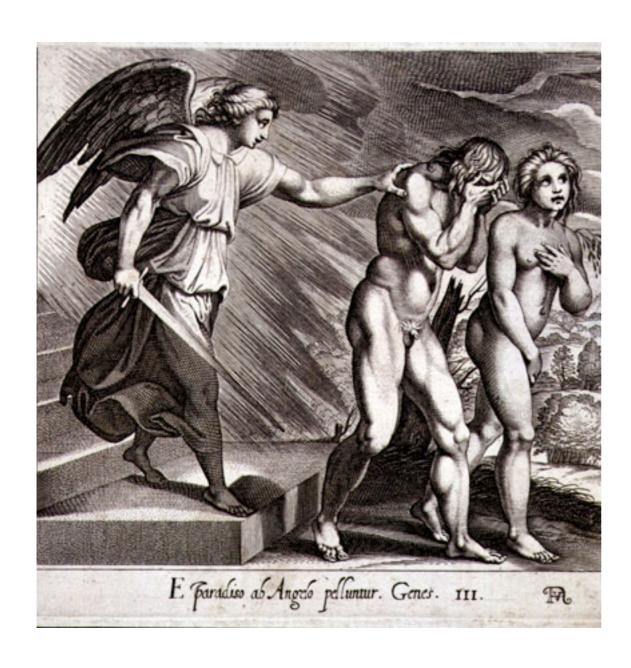
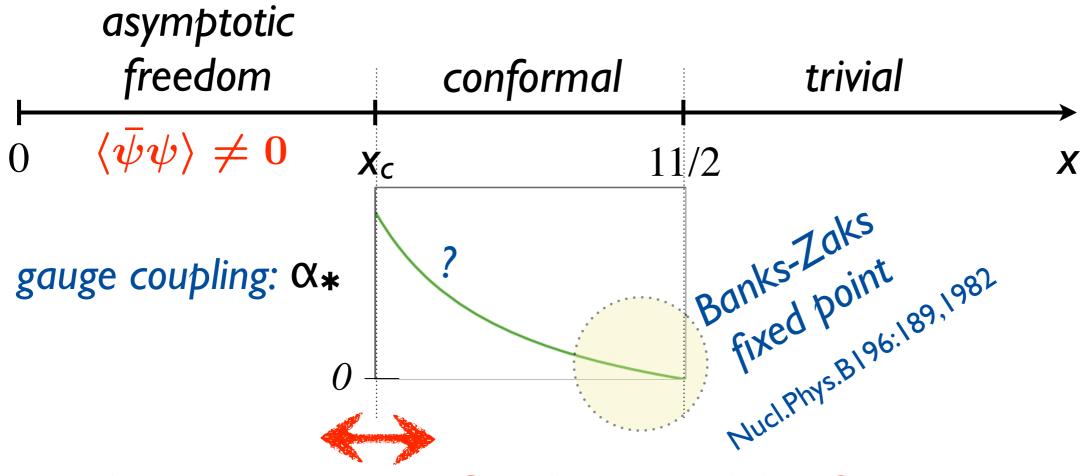
Conformality Lost



J.-W. Lee D.T. Son M. Stephanov D.B.K

arXiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N_c and N_f colors CO^{ors}

Define $x = N_f/N_c$, treat as a continuous variable



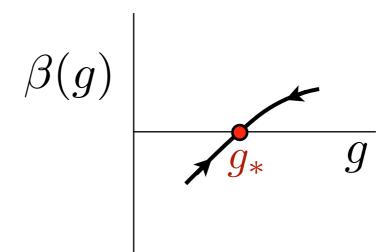
What is the nature of this transition?

How does the IR scale appear as conformality is lost?

- I. A mechanism for vanishing conformal invariance
- II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
- III. A quantum mechanics model: the 1/r2 potential
- IV. AdS/CFT
- V. Relativistic model: defect Yang-Mills
- VI. QCD with many flavors? A partner theory QCD* with a nontrivial UV fixed point?

A theory with an infrared conformal fixed point at $g=g_*$ has a zero in the beta function:

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$



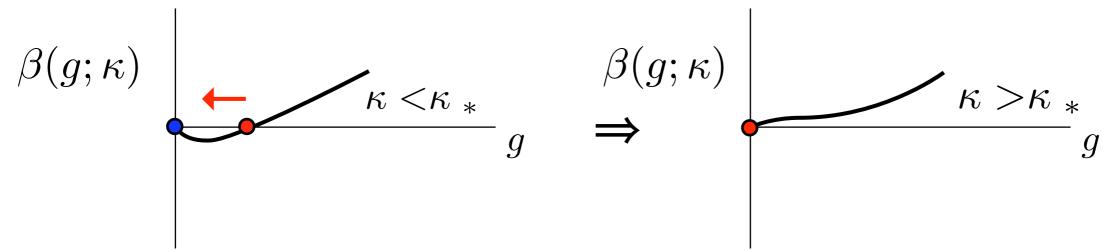
Suppose the theory has another parameter K such that the fixed point at g=g* vanishes for K>K*

Example: supersymmetric QCD is conformal for $3/2 \le N_f/N_c \le 3$ " κ " = N_f/N_c , " κ *" = 3/2, 3

How is conformality lost?

Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:



Example: Supersymmetric QCD at large N_{c} and N_{f}

$$\rightarrow$$
 K=N_f/N_c, K*=3

 $N_f/N_c \le 3 \Rightarrow$ weak coupling Banks-Zaks conformal fixed point

 $N_f/N_c \ge 3 \Rightarrow trivial QED-like "free electric" theory$

$$F_E \sim \frac{g^2}{r^2 \ln (r \Lambda_{\rm UV})}$$

#2: Fixed point runs off to infinity:

$$\beta(g; \alpha)$$
 $\kappa > \kappa *$
 $\kappa < \kappa *$

Possible example? SQCD again $\rightarrow \kappa = N_f/N_c$, $\kappa_* = 3/2$

For K≤K* get "free magnetic phase" [Seiberg]

right electric theory dual to a QED-like magnetic theory:

$$F_E \sim \frac{g^2 \ln (r \Lambda_{\rm UV})}{r^2}$$
 $F_M \sim \frac{g_M^2}{r^2 \ln (r \Lambda_{\rm UV})}$ $g_M \sim 1/g$

#3: UV and IR fixed points annihilate:

$$\beta(g;\kappa)$$
 $\kappa > \kappa *$
 $\kappa < \kappa *$

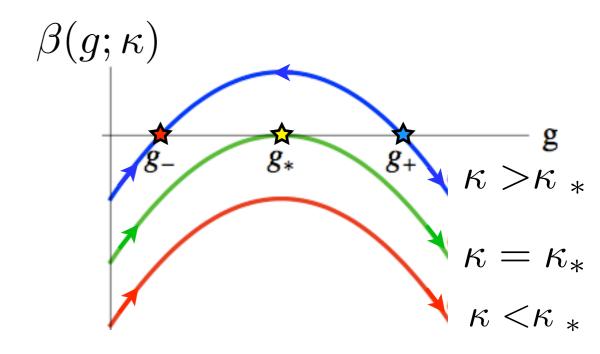
A toy model:
$$\beta(g;\kappa) = (\kappa - \kappa_*) - (g - g_*)^2$$

$$\kappa \ge \kappa_*: g_{\pm} = g_* \pm \sqrt{\kappa - \kappa_*}$$

UV, IR fixed points

$$\kappa = \kappa_*$$
 fixed points merge

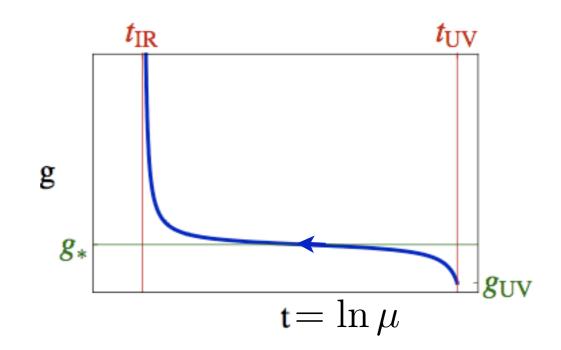
$$\kappa < \kappa_*$$
 conformality lost



What happens close to the transition on the nonconformal side?

$$eta(g;\kappa)$$
 $g_{ ext{UV}}$ g_{*} $g_{ ext{IR}}$ $\kappa \lesssim \kappa_{*}$

- i. Start: $g = g_{UV} < g_*$ in the UV
- ii. g grows, **stalling** near g*
- iii. g strong at scale Λ_{IR}



$$\Lambda_{
m IR} \simeq \Lambda_{
m UV} e^{-\int rac{dg}{eta(g)}}$$

$$= \Lambda_{
m IV} e^{-\frac{\pi}{\sqrt{|\kappa - \kappa_*|}}}$$

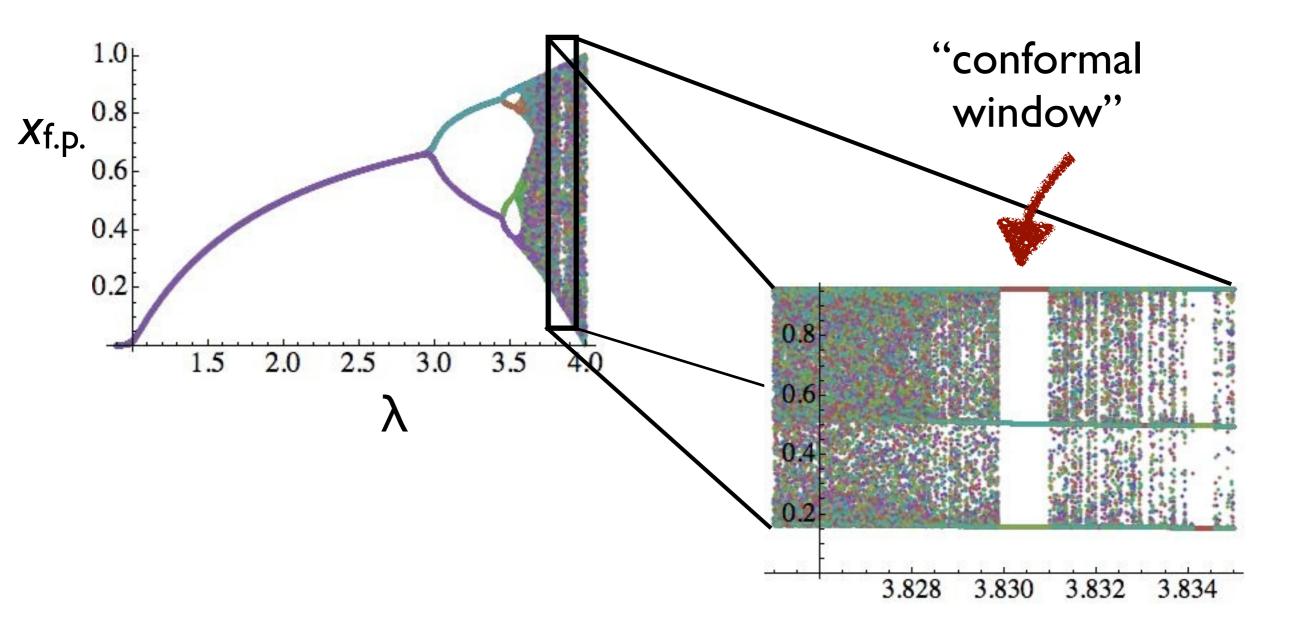
(Not like 2nd order phase transition:

$$\Lambda_{ ext{ir}} \simeq \Lambda_{ ext{uv}} \sqrt{|\kappa - \kappa_*|}$$
)

Aside:

Analogue to "intermittency" in chaotic systems

Iterative maps:
$$x_{n+1} = f(x_n)$$
, $f(x) = \lambda x(1-x)$



Find 3-pt orbit at $\lambda'_c \approx 3.829$, lost at $\lambda_c \approx 3.831$

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{|\kappa-\kappa_*|}}}$$

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an "infinite order" phase transition)

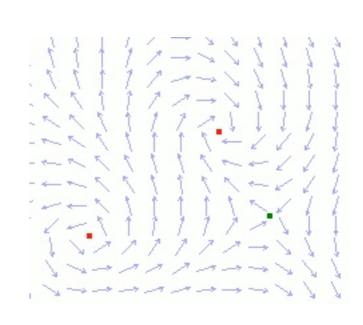
BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model box size R, vortex core size a:

$$E = E_0 \ln R/a , \quad S = 2 \ln R/a$$

$$F = E - TS = (E_0 - 2T) \ln R/a$$

Vortices condense for $T>T_c=E_0/2$; can show correlation length forms:



$$\xi \simeq a \, e^{b/\sqrt{T-T_c}}$$

Classical XY model BKT transition = zero temperature quantum transition in

Sine-Gordon model:

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

New variables:

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

Perturbative β -functions:

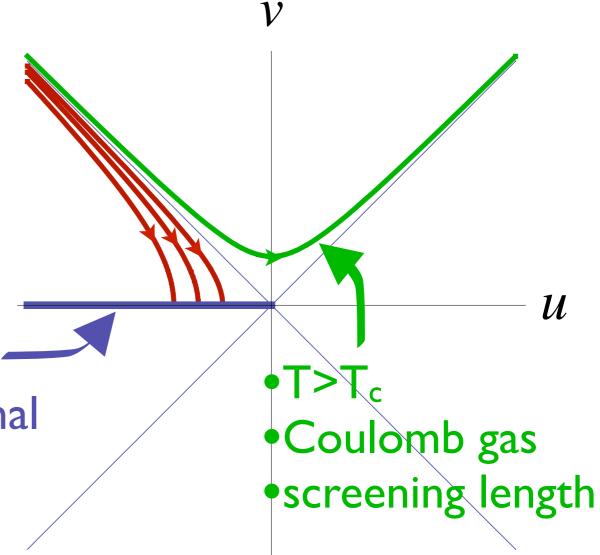
$$\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$$

- $\sim \Lambda = UV$ cutoff at vortex core
- ~ Dimensionful quantities in units of XY model interaction strength

bound vortices

•T<T

trivially conformal



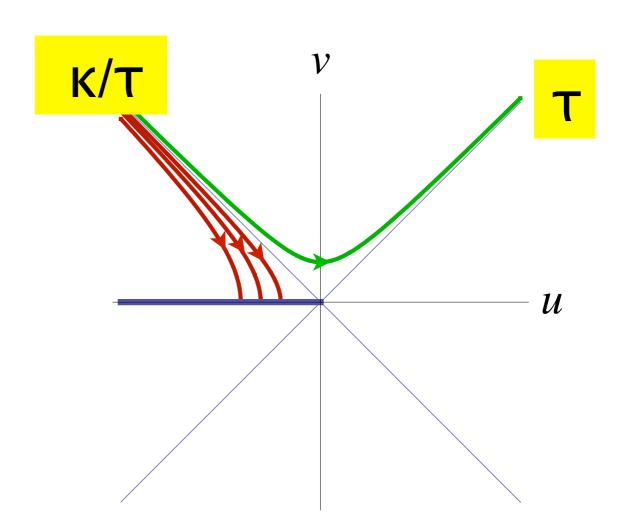
$$u = 1 - \frac{1}{8\pi T}$$
, $v = \frac{2z}{T\Lambda^2}$

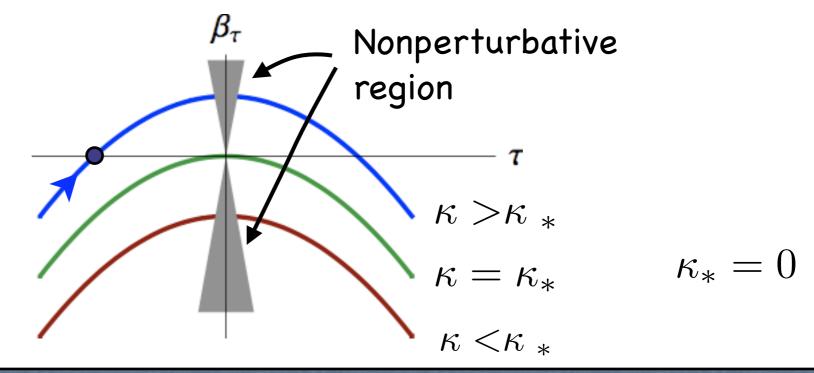
$$\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$$

Newer variables:

$$\tau = (u + v) , \qquad \kappa = (u^2 - v^2)$$

$$\beta_{\tau} = \kappa - \tau^2 \; , \qquad \beta_{\kappa} = 0$$



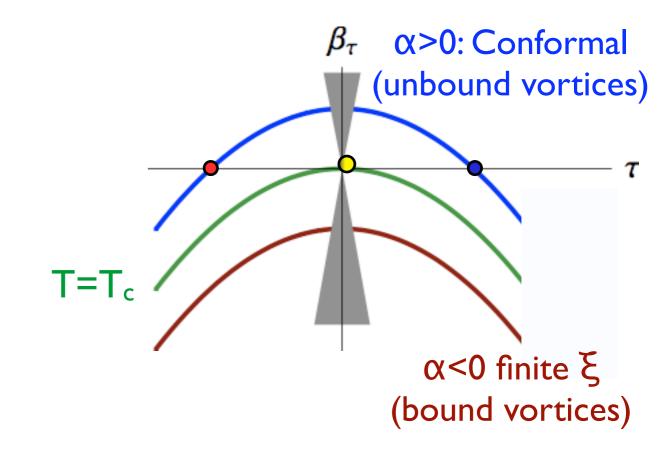


Correlation length in BKT transition:

For small negative K, assume T small & positive in UV

T blows up in RG time

$$t = \int \frac{d\tau}{\beta(\tau)} = -\frac{\pi}{2\sqrt{-\kappa}}$$



...giving rise to an IR scale (like Λ_{QCD}) which sets the scale for the finite correlation length for $\alpha<0$:

$$\xi_{\rm BKT} \sim \frac{1}{\Lambda} e^{\frac{\pi}{2\sqrt{-\alpha}}}$$

So far:

- BKT transition = loss of conformality via fixed point merger
- Mechanism of fixed point merger in general gives rise to "BKT scaling":

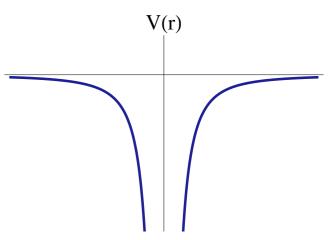
Next: other examples:

- QM with 1/r² potential
- AdS/CFT
- Defect Yang-Mills
- QCD with many flavors

Example: QM in d-dimensions with 1/r² potential

$$\left[-\nabla^2 + V(r) - k^2\right]\psi = 0 , \qquad V(r) = \frac{\kappa}{\kappa^2}$$

$$V(r) = \frac{\kappa}{r^2}$$



k=0 solutions: $\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$

$$\nu_{\pm} - \left(\frac{d-2}{2}\right) \pm \sqrt{\kappa - \kappa_*} \qquad \kappa_* = -\left(\frac{d-2}{2}\right)^2$$

- valid for K* < K < (K*+1)
 - $K < K_*$: V_{\pm} complex, no ground state
 - $K = K_*: V_+ = V_-$
 - K > (K*+1): r^{\vee} too singular to normalize

$$\left[-\nabla^2 + V(r) - k^2\right]\psi = 0 , \qquad V(r) = \frac{\kappa}{r^2}$$

k=0 solutions:
$$\psi = c_- r^{\nu_-} + c_+ r^{\nu_+}$$

$$\nu_{\pm} - \left(\frac{d-2}{2}\right) \pm \sqrt{\kappa - \kappa_*} \qquad \kappa_* = -\left(\frac{d-2}{2}\right)^2$$

- $c_+ = 0$ or $c_- = 0$ are scale invariant solutions
- If $c_{+}\neq 0$, $\psi \rightarrow c_{+}r^{\vee +}$ for large $r(\nu_{+} > \nu_{-})$
- to make sense of BC at r=0, introduce δ -function:

$$V(r) = \frac{\kappa}{r^2} - g\delta^{(d)}(r)$$

- \bullet r $^{V+}$ corresponds to IR fixed point of g
- \bullet r^{v-} corresponds to unstable UV fixed point of g

RG treatment of $1/r^2$ potential: I. Perturbative

$$K_* = -(d-2)^2/4$$
 so work in $d=2+\epsilon$

$$S = \int dt \, d^{d}\mathbf{x} \, \left(i\psi^{\dagger}\partial_{t}\psi - \frac{|\nabla\psi|^{2}}{2m} + \frac{g\pi}{4}\psi^{\dagger}\psi^{\dagger}\psi\psi\right)$$

$$-\int dt \, d^{d}\mathbf{x} \, d^{d}\mathbf{y} \, \psi^{\dagger}(t,\mathbf{x})\psi^{\dagger}(t,\mathbf{y}) \frac{\kappa}{|\mathbf{x} - \mathbf{y}|^{2}}\psi(t,\mathbf{y})\psi(t,\mathbf{x})$$

propagator:
$$\frac{i}{\omega - \mathbf{p}^2/2m}$$

contact vertex: $i\pi g\mu^{-\epsilon}$

"meson exchange": $\frac{2\pi i\kappa}{\epsilon} \frac{1}{|\mathbf{q}|^{\epsilon}}$

$$\beta(g;\kappa) = \mu \frac{\partial g}{\partial \mu} = \left(\kappa + \frac{\epsilon^2}{4}\right) - (g - \epsilon)^2$$

Same as toy model! $\kappa_* = -\epsilon^2/4$, $g_* = \epsilon$

K>K*: conformal

K=K*: critical

K<K*: g blows up in IR

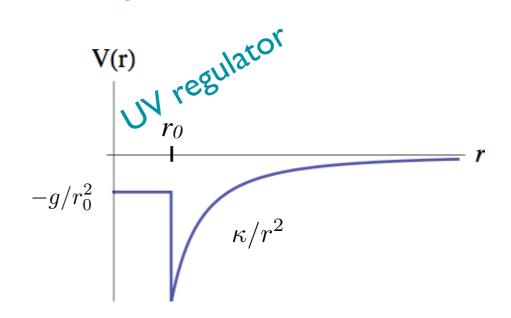
$$B \sim \left(\frac{\Lambda_{\rm IR}^2}{m}\right) \sim \left(\frac{\Lambda_{\rm UV}^2}{m}\right) e^{-2\pi/\sqrt{\kappa_* - \kappa}} \label{eq:BKT}$$
 BKT scaling

bound state energy

RG treatment of 1/r² potential: II. Non-perturbative

regulate with square well:

$$V(r) = \begin{cases} \kappa/r^2 & r > r_0 \\ -g/r_0^2 & r > r_0 \end{cases}$$



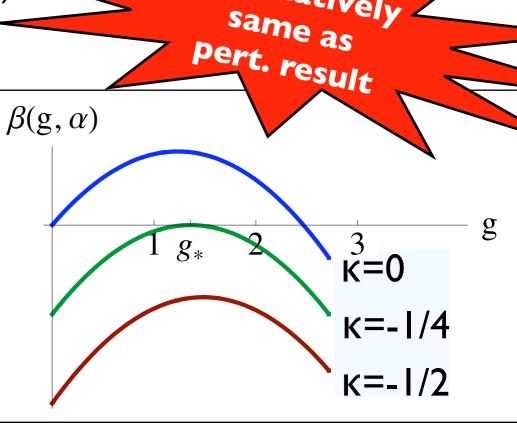
E=0 solution for r>r₀: $\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance: $d(c_+/c_-)/dr_0 = 0$:

Find exact β -function for g. Eg, for d=3:

$$\beta = \frac{2\sqrt{g}\left(\kappa + \sqrt{g}\cot\sqrt{g} - g\cot^2\sqrt{g}\right)}{-\cot\sqrt{g} + \sqrt{g}\csc^2\sqrt{g}}$$

$$K_* = -\frac{1}{4}, g_* \approx 1.36$$



Qualitatively

Aside: Even better to define a modified coupling constant

$$\gamma = \left(\frac{\sqrt{g} J_{d/2}(\sqrt{g})}{J_{d/2-1}(\sqrt{g})}\right)$$

Condition $d(c_+/c_-)/dr_0$ yields exact β -function in d-dimensions:

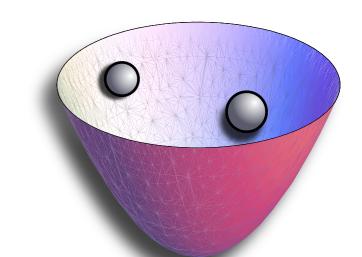
$$\beta_{\gamma} = \frac{\partial \gamma}{\partial t} = (\kappa - \kappa_*) - (\gamma - \gamma_*)^2, \quad \gamma_* = \frac{d-2}{2}$$

- Toy model is exact!
- Y is a periodic function of g, Y=±∞ equivalent
- Aside: Limit cycle behavior for K<K*:
 describes "Efimov states" for trapped atoms
 at Feschbach resonance

Conformal phases: measure correlations, not β -functions! Look at operator scaling dimensions:

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2|$
- Compute 2-particle ground state energy E₀
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$



2-particle wavefunction at $|r_1-r_2|=0$

As the two conformal theories merge when $K \rightarrow K_*$, operator dimensions in the two CFTs merge

For $1/r^2$ potential -- find for the two conformal theories:

[
$$\psi\psi$$
]: $\Delta_{\pm} = (d + \nu_{\pm}) = \left(\frac{d+2}{2}\right) \pm \sqrt{\kappa - \kappa_{*}}$ "+" = UV fixed point "-" = IR fixed point

Note: $(\Delta_{+}+\Delta_{-}) = (d+2)$: scaling dimension of nonrelativistic spacetime.

Analog in AdS/CFT:

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

Massive scalar in the bulk two solutions to eq. of motion:

$$\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-}$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2}\right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2}$$

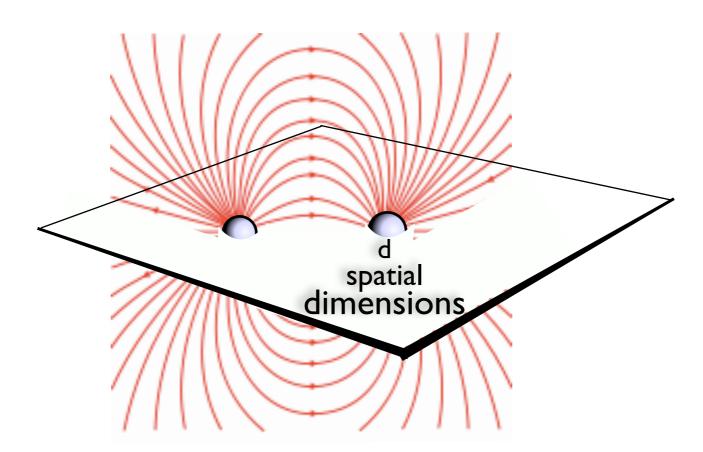
AdS

QM

- $(\Delta_{+}+\Delta_{-})=d=$ spacetime dim of CFT
- when $m^2 = m_*^2 = -d^2/4$, $\Delta_{\pm} = d/2$
- Instability (no AdS or CFT) for m² < m_{*}² (B-F bound)

- $(\Delta^+_{\psi\psi} + \Delta^-_{\psi\psi}) = (d+2) = conformal wt.$ of nonrelativistic d-space+time
- $K = K_* = -(d-2)^2/4 \Rightarrow \Delta_{\pm} = (d+2)/2$
- Conformality lost for K < K*

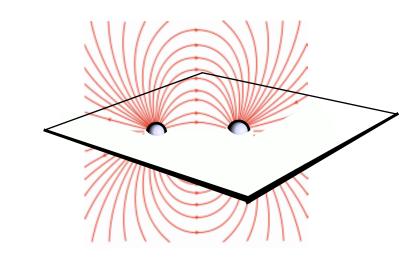
A relativistic example: defect Yang-Mills theory



Charged relativistic fermions on a d-dimensional defect + 4D conformal gauge theory (eg, N=4 SYM)

$$S = \int d^{d+1}x \ i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{4g^2}\int d^4x \, F^a_{\mu\nu}F^{a,\mu\nu}$$
 g doesn't run

g doesn't run by construction



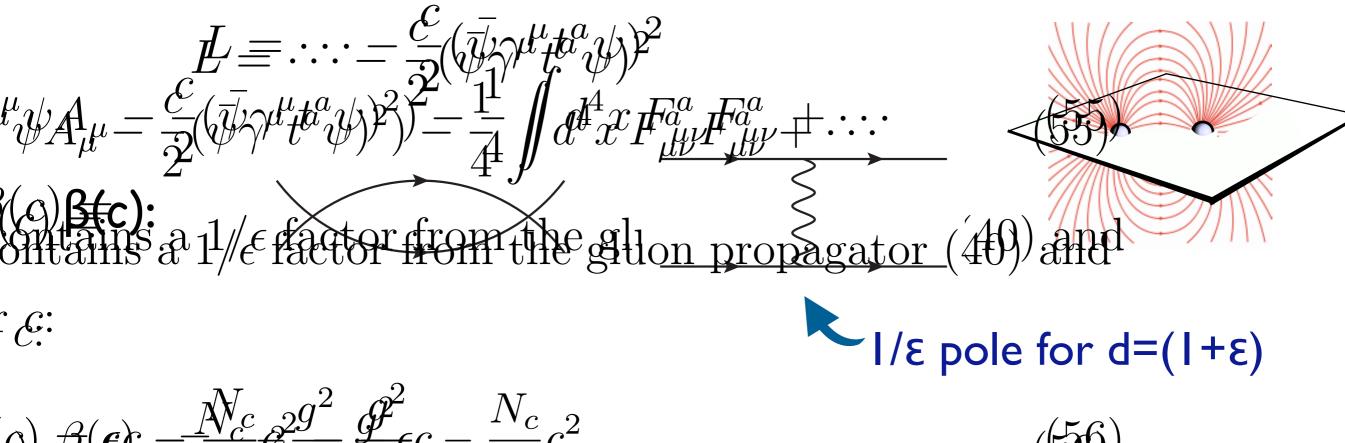
Expect a phase transition as a function of g:

$$\langle \bar{\psi}\psi \rangle = \begin{cases} 0 & g < g_* \\ \Lambda_{\rm IR}^d & g > g_* \end{cases}$$

Add a contact interaction to the theory (as in QM & AdS/CFT examples!) and study its running:

$$\Delta S = \int d^{d+1}x \left(-\frac{c}{2} (\bar{\psi} \gamma_{\mu} T_a \psi)^2 \right)$$

Phase transition is in perturbative regime for $d=1+\epsilon$ (spatial dimensions of "defect"): compute β -function



$$(56) = \frac{N_c c}{2\pi} e^2 \frac{g^2}{2\pi} \frac{g^2}{2\pi} c - \frac{N_c}{2\pi} c^2$$

$$(56)$$

$$g_* \text{ where } g(c) \text{ has a double zero.} \left(c - \frac{\epsilon \pi}{2\pi}\right)^2$$

$$g_{*} \text{ where } g(c) \text{ has a double zero}_{2\pi}^{N_c} \left(c - \frac{\epsilon \pi}{N_c}\right)^2$$

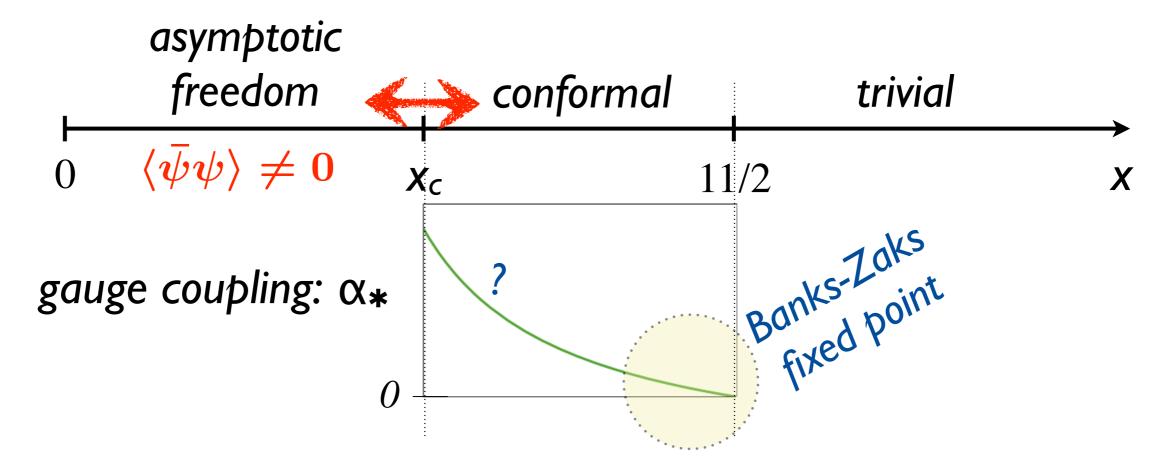
$$f_{*} = \frac{\pi^2 \epsilon}{N_c}$$
• Find g_{*} transition at $g^2 = g_{*}^2 = (\epsilon \pi)^2/N_c$

• Find \overline{BW}_{T} transition at $g^2 = g_*^2 = (\epsilon \pi)^2/N_c$ $RG = \frac{\Lambda_{W}}{\epsilon \pi^2} \frac{1}{2} \frac{$

DAVID B. KAPLAN TIFR FEB. 12, 20

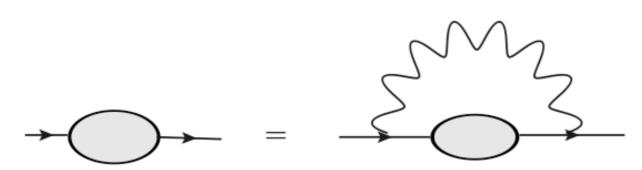
Friday, February 12, 2010 OHR-fermi collining its zero at the IVIV GHT of the

Back to QCD at LARGE N_c and N_f:



Transition at $x=x_c$?

Schwinger-Dyson (rainbow approximation):

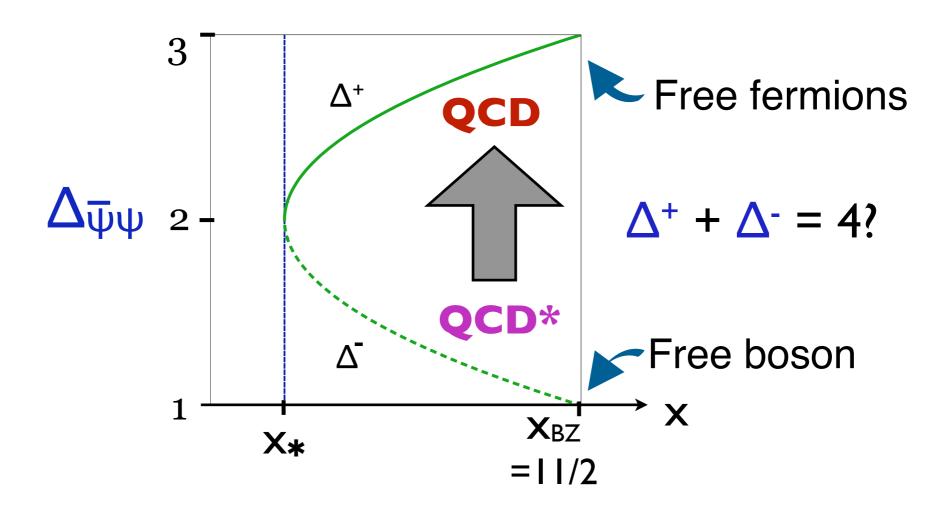


Miransky 1985

Appelquist, Terning, Wijerwardhana 1996

Found: BKT scaling for $\langle \overline{\psi} \psi \rangle$...not rigorous, but qualitatively correct?

Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.



Near Banks-Zaks (IR) fixed point:

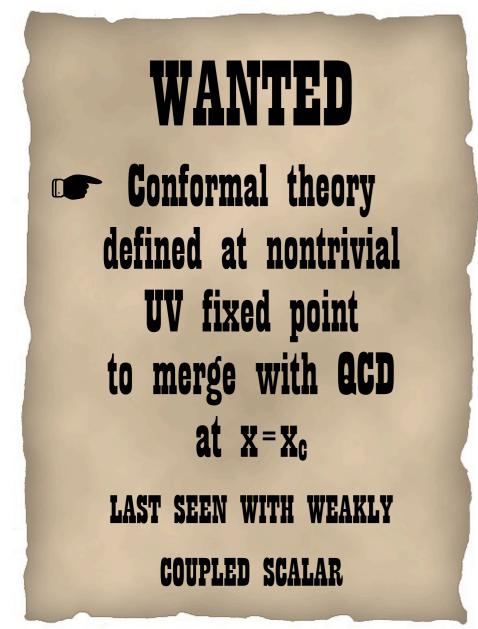
QCD:

$$\Delta_{\Psi\bar{\Psi}}^{\dagger} = 3 - \# g^2 N_c$$

(almost free quarks)

Partner theory QCD*:

$$\Delta_{\psi\bar{\psi}}^{-} = d - \Delta_{\psi\bar{\psi}}^{+} = I + \# g^{2}N_{c}$$
(almost free scalar?)



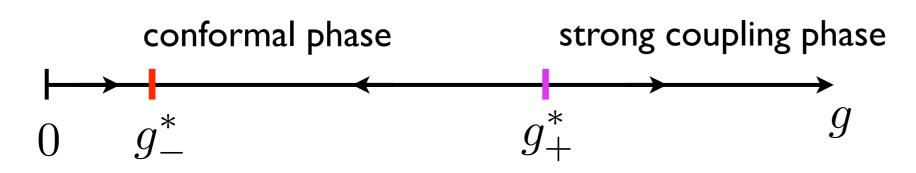
Haven't found a perturbative example with:

- (i) weakly coupled scalar;
- (ii) full $SU(N_f)xSU(N_f)$ chiral symmetry
- (iii) Matching anomalies

Look for it on the lattice?

One place to start: strong/weak transition for QCD with N_f in conformal window?

(A. Hasenfratz)



QCD* possibly at g_+^* ?

Conclusions:

- Fixed point annihilation appears to be a generic mechanism for the loss of conformality
- II. Leads to similar scaling as in the BKT transition: $\Lambda_{IR} \sim \Lambda_{UV} e[-\pi/\sqrt{(-\kappa-\kappa_*)}]$
- III. Both relativistic & non-relativistic examples
- IV. Analog in AdS/CFT; implications for AdS below the Breitenlohner-Freedman bound?
- V. Implications for QCD with many flavors? Is there a pair of conformal QCD theories? What is QCD*?
- VI. Finding QCD* should be on field theory / lattice QCD "to-do" list.

